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Abstract  

Many of today's high-performance computer processors are super-scalar. They can dispatch 
multiple instructions per cycle and, hence, provide what is commonly referred to as 
instruction-level parallelism This super-scalar capability, combined with software pipelining, can 
increase processor throughput dramatically. Achieving maximum throughput, however, is 
nontriviaL Compilers must engage in aggressive optimization techniques, such as loop unrolling, 
speculative code motion, etc., to structure code to take full advantage of the underlying computer 
architecture. The phase-ordering implications of these optimizations are not well understood and 
are the subject of continuing research. Of particular interest are optimizations that enhance 
instruction-level parallelism. Two of these are loop unrolling and loop fusion. These are 
source-level optimizations that can be performed by either the programmer or the compiler. 
These optimizations have dramatic effects on the compiler's instruction scheduler. Performed too 
aggressively, these optimizations can increase register pressure and result in costly memory 
references. This paper details experiments performed to measure the effects of these source-level 
code transformations and how they influenced register pressure and code performance. 
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1    Introduction and Problem Statement 

Modern high-performance computer platforms are capable of achieving incredible levels 
of code execution speed. One way they increase performance is by taking advantage of 
parallelism found in algorithms. To this end, many of these systems offer multiprocessor 
parallelism. Furthermore, many also offer software pipelining to take full advantage of low- 
level, or code-level, parallelism [1]. This is parallelism actually present in the way machine 
instructions are dispatched. 

Also of paramount importance is that these machines take full advantage of their com- 
plicated memory systems. Most of the standard optimization techniques will really only 
provide maximum performance if the computer's memory system is being used in an efficient 
manner. Most shared-memory architectures have some type of memory hierarchy. The main 
reason memories are implemented in this fashion is to optimize the price-performance ratio, 
given the widening gap between central processing unit (CPU) speed and main memory 
performance. CPU speeds are currently doubling about every 2 or 3 years while the speed 
of main memory has historically doubled only about every decade. These tiered memories, 
with their nondeterministic behavior, are hard to manage and predict. This makes the job 
of the compiler's code generator that much more difficult. Memory systems have become 
so complicated on some architectures that slight memory reference changes on codes may 
speed up or slow down execution by an order of magnitude. 

Since registers provide fast data access, one goal of the compiler back end is to allocate 
and assign registers in an effective manner. The register allocator tries to assign a register to 
each register candidate. Since register access is very fast, the compiler should generate code 
that reuses these assigned registers as much as possible. To do this, the register allocator 
and scheduler should work closely together [2]. This is actually a very complicated phase- 
ordering problem. At the least, the scheduler should order code in a way that instruction- 
level parallelism can be exploited, and the register allocator should give top priority to 
assigning a register to frequently used variables. Several source-level optimizations can be 
performed with the goal of increasing memory locality and instruction-level parallelism and 
thus assisting the code generator. 

The problem, however, is that when these optimizations are pursued too aggressively, 
they can reach a point of diminishing returns. When the compiler starts to run out of 
available registers to use, register pressure is said to be high. At the point where registers 
are no longer available, the register allocator must actually "spill" a register's content to 
memory to free it for other uses [3]. On tiered memory machines, such an action can be 
detrimental to varying degrees. If the value is written to cache, the access time is very 
small, but the cache manager may still have to invalidate the cache line. This operation 
can cause the cache line to be rewritten to main memory. Actual main memory access 
can be very expensive. On the Silicon Graphics (SGI) Power Challenge architecture, this 
delay, though seldom reaching this point, can be as high as 90 cycles. Accordingly, the 
governing hypothesis for this study is that memory locality and code-level, parallelism- 
enhancing transformations are beneficial only to the point where register pressure becomes 
very high. 



2 Experimental Methodology 

The example codes listed in this paper were all run on the SGI Power Challenge architecture. 
This is a 64-bit architecture using 75-MHz MIPS R8000 processors. There are 32 64-bit 
floating-point registers available to the assembler. The architecture is superscalar and can 
dispatch up to four instructions per cycle. Prefetching is not implemented in the Power 
Challenge architecture. This machine uses a hierarchical memory structure like the one 
described previously. 

Loop unrolling and loop fusion were the two transformations that were studied in this 
experiment. These are common transformations, and loop unrolling especially is the most 
heavily used transform to increase instruction-level parallelism. All programs were writ- 
ten in C and were compiled with the SGI MlPSpro compiler version 6.0.2. Two compile 
options were used. The first was -02, which turns on extensive optimization. These opti- 
mizations are conservative in that they almost always provide some speedup and maintain 
floating-point accuracy. The second was -03, which is aggressive optimization. The main 
consequence of -03 optimization is that it turns on software pipelining. The code scheduler 
attempts to pipeline innermost loops whenever possible. 

A discovery made halfway through these trials led to a small change in the analysis of the 
results. In version 6.0.1 of the compiler system (running at the University of Delaware), the 
pipeline scheduler would give up if it could not generate a schedule without register spilling. 
The newer version of the compiler (running at the Army Research Laboratory), however, 
will still schedule pipelined loops with spill code introduced. The general hypothesis remains 
the same. The new twist is that spilling will limit pipelining usefulness. 

3 Results 

3.1    Loop Unrolling 

Loop unrolling replicates the body of a loop some number of times known as the unrolling 
factor. Loop unrolling has the ability to increase performance in two ways. First, it reduces 
loop overhead by performing less compare and branch instructions. Second, it increases work 
performed in the resulting larger loop body by allowing more opportunity for optimization 
and register usage. Most of the increase in performance speed on the SGI is because 
multiplication and addition instructions may be overlapped in the multiple instruction cycle. 

A simple 2-D matrix multiply code fragment was used to test unrolling effects on the 
R8000 processor. This code is listed in Appendix A. Four unrolled versions of the matrix 
multiply were implemented in different functions. There is a caveat. The author does not 
claim this code to be the best version of matrix multiply possible. Simply, the base version 
is straightforward and provides a good example of unrolling for memory locality. Other 
C codes with loop reordering and splitting will undoubtedly come closer in reaching near- 
theoretical peak on the SGI architecture than these versions. The function MMJbasic is the 
basic matrix multiply loop. The optimizer unrolled the inner loop four times when this was 
compiled. The hand-coded unrolling of the other functions was performed on the outer and 
middle loop nests. The exact unrolling can be seen in the code listing in Appendix A. The 
optimizer did not unroll the inner loop in these cases. 



Various data were collected during program execution. The results are displayed in Table 
1. Column one lists the function name. Columns "-02" and "-03" list the run times of the 
code compiled with the two flags, respectively. The rest of the columns pertain only to the 
executable compiled with -03 optimization. "Cycles/Iteration" lists how many computer 
cycles were required to perform one complete iteration of the inner loop.      For instance, 

Table 1: Matrix multiply performance and other statistics. 

Function 
Run Time (sec) -03 Compiled Executable 
-02 -03 Cycles/Iteration FLOPS (%) Memory (%) 

MM-basic 94.37 91.84 0.67 33 100 
MM-unrolLl 20.17 14.59 0.58 85 71 
MM.unroll_2 13.38 10.45 0.56 88 66 
MM_unroll_3 14.23 14.28 0.67 74 44 

in MM_unroll_2, both the outer and middle loops were unrolled four times. The inner loop, 
therefore, actually completes 16 iterations each time it is executed. The scheduler reported 
this loop to be pipelined with a steady-state of nine cycles per iteration. In this case, the 
number reported in the table is derived from dividing the steady state number of cycles by 
the total number of computations performed by one iteration of the inner loop. FLOPS 
gives the compiler-calculated rate of floating-point operations per second based on the MIPS 
R8000's ability to perform two such operations per cycle. Memory lists the percentage of 
peak memory references achieved. The maximum is two each cycle. 

As evident from the timing profiles, the function MM.basic is perhaps the worst way 
of performing a matrix multiply. This poor performance results from the inefficient way 
in which memory is being utilized. The best way to check on memory performance is 
through profiling. Two profiling mechanisms are available on the SGI operating system: 
prof and pixie. Comparison of their outputs tells on a procedure-by-procedure basis how 
well the memory system is performing. Prof uses program counter sampling to collect data. 
It interrupts the code periodically and records the location of the program counter. The 
condensed prof output is listed as follows: 

samples      time (50 cum time (50 procedure  (file) 

28046 2.8e+02s( 34.1) 2.8e+02s( 34.1) MM.basic 
18403 1.8e+02s( 22.4) 4.6e+02s( 56.6) MM_unroll_l 
18236 1.8e+02s( 22.2) 6.5e+02s( 78.8) MM_uuroll_2 
17263 1.7e+02s( 21.0) 8.2e+02s( 99.8) MM_unroll_3 

In contrast, pixie instruments the code with counters at the beginning and end of basic 
blocks. It counts only the number of cycles the program executes and does not account for 
cache misses, bank conflicts, etc. The abbreviated pixie output is given as follows: 

cycles (*/.)    cum '/. sees        instrns        calls procedure (file) 

14883848018(28.12) 28.12 
12760324018(24.10) 52.22 
12630242018(23.86) 76.08 
12540096818(23.69) 99.77 

198.45 29765772028 
170.14 26840486028 
168.40 26610363028 
167.20 26484145228 

1 MM.basic 
1 MM_unroll_l 
1 MM_unroll_2 
1 MM_unroll_3 



Optimizers can affect the accuracy of profiling. Therefore, the profiled executables were 
created with optimizations disabled. 

In the best case, pixie is reporting that MMJbasic should complete in about 198 seconds. 
Prof is showing that it is taking about 280 seconds. This shows that the current structure 
of the code is not working well with the memory system. The unrolled code fragments 
dramatically illustrate the advantages of loop unrolling. In these cases, loop unrolling was 
the means to achieve register (or loop) blocking. By unrolling the various loops, loads and 
stores for several array elements were highly reduced. The memory system performed much 
better, as evident from the run time as well as the closely matched times given in the prof 
and pixie profiles. 

Getting the maximum benefits from a compiler usually requires having a detailed knowl- 
edge of the many optional flags to control the fine points in the compiling process. The 
MlPSpro compiler is no different. With standard options, the compiler could not pipeline 
the loop body for MM_unroll_3 because the loop body was too long. The compile option 
-SWP:body_ins=250 was used to increase the maximum size of a loop body that would be 
considered for software pipelining. 

Loop unrolling led to great speed increases. Unrolling with pipelining allowed the basic 
matrix multiply to execute at 33% efficiency. Without unrolling, efficiency is only around 
10% of the maximum throughput. Loop unrolling with the goal of register blocking achieved 
even greater results. The software pipeliner, which allows differing loop iterations to overlap, 
was able to achieve speedup over standard -02 optimization in almost every case. 

Unrolling does reach a point of maximum usefulness in these test cases. With each func- 
tion, more and more unrolling was done in order to promote register reuse and instruction- 
level parallelism. MM_unroll_2 has extensive unrolling but does not produce any spill code. 
Implementation of MM_unroll_3 however, produces extensive spilling. A quick check of the 
statistics reported in Table 1 graphically show that the point has been reached at which 
unrolling is harming execution speed. For MM_unroll_3, the cycles/iteration is higher and 
the FLOP rate is smaller than those figures reported for MM_unroll_2. The actual output 
from the scheduler is listed next.1 

#<swps> Not unrolled before pipelining 
#<swps> 27 cycles per iteration 
#<swps> 40 flops ( 74'/. of peak)   (madds count as 1) 
#<swps> 40 madds ( 74*/. of peak) 
#<swps> 24 mem refs ( 44% of peak) 
#<swps> 3 integer ops    (    5'/, of peak) 
#<swps> 67 instructions ( 62*/, of peak) 
#<swps> 32 fgr registers used. 
#<swps> 29 restores introduced. 
#<swps> 14 possible stall cycles 
#<swps> 14 min possible stall cycles 

As expected, register spilling does hurt the speed of execution in this case. A massive 
amount of spills and restores has been added by the scheduler, and even pipelining cannot 
hide the resultant delays. 

In the pipeline message, there is a statement saying 14 possible stall cycles may exist. 
Most stalls on this processor occur due to the floating-point unit and the integer unit of 

1Complete pipeliner messages for the example codes are listed in Appendices C and D. 



the CPU becoming unsynchronized. Several factors may lead to this occurrence. Indirect 
addressing, such as a [b [i] ], will cause the lookup of b [i] to complete before the load/store 
can begin. Multidimensional arrays, prevalent in these examples, lead to similar problems. 
These integer unit operations paired together with the many floating-point multiplication 
operations may be the reason the compiler is warning of worst-case synchronization stalls. 
How much of the degradation in MM_unroll_3 is attributable to stall cycles and how much 
is attributable to spilling is hard to determine. 

3.2    Loop Fusion 

Loop fusion is a process where two or more adjacent loops are merged into a single loop. 
Loop fusion has the potential to increase performance by reducing loop overhead and in- 
creasing instruction-level parallelism. 

A somewhat contrived example was used to test fusion on the R8000 processor. The 
loops were deliberately designed to give variables long live ranges and hence to make things 
as difficult as possible for the scheduler to achieve scheduling, not to mention pipelining, 
without introduction of some spill code. The code is listed in Appendix B. The loops in the 
NotFused function are named loopl, loop2, and loop3. Table 2 lists the execution results. 

Table 2: Loop Fusion Performance and Other Statistics. 

Function 
Run Time (sec) -03 compiled executable 
-02 -03 Cycles/Iteration FLOPS(%) Memory (%) 

NotFused 
loopl 
loop2 
loop3 

Fused 

0.97 

0.67 

0.81 

1.26 

18.0 
11.0 
11.0 
48.0 

33 
68 
68 
43 

100 
95 
95 
53 

If the loops are not pipelined, the fused loop does indeed outperform the three separate 
loops. The multiple compare and branch instructions executed in the three loops can be 
extremely costly because they often interfere with maximum instruction issue per cycle. In 
this case, the reduction in loop overhead increased code speed by 1.4. The fused loops did 
create a small amount of spill code, but the effects seem to be negligible compared to cycles 
lost on compare and branch instructions. 

For pipelining, however, the spill code seemed to cause a greater problem. The pipeliner 
reported numerous potential problems: 

#<swps> Not unrolled before pipelining 
#<swps> 48 cycles per iteration 
#<swps> 42 flops ( 437. of peak)   (madds count as 1) 
#<swps> 0 madds (    0'/. of peak) 
#<swps> 51 mem ref s ( 53'/. of peak) 
#<swps> 6 integer ops    (    6'/. of peak) 
#<swps> 99 instructions ( 51'/. of peak) 
#<swps> 32 fgr registers used. 
#<swps> 3 spills 5 restores introduced. 



#<swps> 25 possible stall cycles 
#<swps> 11 min possible stall cycles 
#<swps> 26 min cycles required for resources 
#<swps> 48 cycle schedule register allocated. 
#<swps> 30 min cycles required for resources with additional memory refs. 
#<swps> 30 min cycles required for recurrences with additional memory refs. 

Stalls are once again present, and this time there is a warning about the number of cycles 
required to deal with resources and recurrences with memory references. All of these prob- 
lems seem to have a very bad cumulative effect on the final performance. This code was not 
written with any regard to memory locality. The three loops taken separately and pipelined 
performed fairly well, but could still not perform as well as the fused, nonpipelined loop. 
The spill code in the pipelined fused loop has put extreme burdens on the memory system 
and has caused a severe loss of performance. 

4    Conclusion 

To be of maximum usefulness, the scheduler of a compiler must be able to fully take into 
account the extremely complicated memory systems in most of today's shared-memory, 
high-performance computers. As has been shown from these examples, transformations 
to increase memory locality as well as reduce loop overhead and promote instruction-level 
parallelism can be extremely advantageous. They are, however, extremely interrelated, and 
promoting one often takes place with the detriment of the other. 

Is there a best choice for ordering these transformations or some way of knowing how 
much of one to perform? Building such knowledge into the compiler will be very difficult. 
Optimal scheduling is itself an NP-complete problem, and predicting memory system behav- 
ior is difficult. Building extensive information about the memory system into the compiler 
will undoubtedly greatly increase compile time and with the nondeterministic behavior of 
the memory system still have the potential to not be totally accurate. Those codes worthy 
of extensive analysis and optimization will probably be best served by having compilers that 
generate detailed messages about the actions they took that will allow the programmer to 
make more informed choices about optimizing source-level code structure. It seems that 
only through profiling and modifying code by hand can maximum performance be achieved 
on a per-architecture basis. Some general conclusions are noteworthy, however: 

• Loop unrolling is very efficient at promoting instruction-level parallelism. 

• 

• 

Loop fusion is very efficient at removing costly compare and branch instructions and 
may be more efficient than pipelining in some cases. 

Large loop bodies with somewhat random or erratic memory access patterns will 
seldom benefit from pipelining. These loops will either be better off not pipelined or 
distributed and then pipelined if possible. 

• Codes written that take into account the memory system should in most cases benefit 
from pipelining. 

• Loop unrolling to promote register reuse is only efficient to just prior to the point 
where spill code must be introduced. 



References 

[1] J. L. Lo and S. J. Eggers. Improving balanced scheduling with compiler optimizations 
that increase instruction-level parallelism. In ACM SIGPLAN 1995, pages 151-162, 
1995. 

[2] C. Norris and L. Pollock. An experimental study of several cooperative register allocation 
and instruction scheduling strategies. In MICRO 28. The 28th International Symposium 
on Micro Architecture, November 1995. 

[3] G. Chaitin, M. Auslander, and A. Chandra. Register allocation via coloring. In Com- 
puter Languages, volume 6, pages 47-57. 1981. 



INTENTIONALLY LEFT BLANK 



A    Loop Unrolling Examples 

«include <stdio.h> 
«include <stdlib.h> 
♦include <sys/time.h> 

«define N 1000 
«define L 480 
«define M 1000 

double a[M][L],  b[L][N],  c[M][N]; 

void init()  { 
int i,  j,  k; 

for  (i=0;   i<M;   i++) 
for (k=0;  k<L;  k++) 
a[i][k]  = drand48(); 

for (k=0;  k<L;  k++) 
for  (j=0;  j<N;  j++) 
b[k][j]  = drand48(); 

for  (i=0;   i<M;  i++) 
for (j=0;  j<N;  j++) 

c[i][j]  = 0.0; 

void MM_basic()   •{ 
int i,  j, k; 

StartTimerO; 

for  (j=0;  j<N;  j++) 
for  (k=0;  k<L;  k++) 

for (i=0;   i<H;   i++) 
c[i][j]  = c[i][j]  + a[i][k]  * b[k][j]; 

StopTimerO; 

printf("*/.f\n",   c[l][l]); 

> 

void MM_unroll_l()  { 
int i, j, k; 

StartTimerO; 

for  (j=0;   j<N;   j+=2) 
for (k=0;  k<L;  k+=6) 

for  (i=0;  i<H;  i++) { 
c[i][j+0] = c[i][j+0]  + a[i][k+0]  * b[k+0][j+0] 
c[i][j+0] = c[i][j+0]  + a[i][k+l]  * b[k+l][j+0] 
c[i][j+0] = c[i][j+0]  + a[i][k+2]  * b[k+2] [j+0] 
c[i][j+0] = c[i][j+0]  + a[i][k+3]  * b[k+3] [j+0] 
c[i][j+0] = c[i][j+0]  + a[i][k+4]  * b[k+4] [j+0] 
c[i][j+0] = c[i][j+0] + a[i][k+5]  * b[k+5] [j+0] 

c[i][j+l] = c[i][j+l] + a[i][k+0]  * b[k+0][j+l]; 



c[i][j+l] = c[i][j+l] + a[i][k+l] * b[k+l] [j+1] 
c[i][j+l] = c[i][j+l] + a[i][k+2] * b[k+2] [j+1] 
c[i][j+l] = c[i][j+l] + a[i][k+3] * b[k+3] [j+1] 
c[i][j+l] = c[i][j+l] + a[i][k+4] * b[k+4][j+l] 
c[i][j+l] = c[i][j+l] + a[i][k+5] * b[k+5][j+l] 

StopTimerO ; 

printf('7.f\n",   c[l][l]); 

} 

void MM_unroll_20  { 
int i,  j ,  k; 

StartTimerO; 

for  (j=0;  j<K;  j+=4) 
for (k=0;  k<L;  k+=4) 

for  (i=0;  KM;   i++) { 
c[i][j+0] = c[i][j+0] + a[i][k+0] * b[k+0][j+0] 
c[i][j+0] = c[i][j+0] + a[i][k+l] * b[k+l][j+0] 
c[i][j+0] = c[i][j+0] + a[i][k+2] * b[k+2][j+0] 
c[i][j+0]  = c[i][j+0]  + a[i][k+3]  * b[k+3][j+0] 

c[i][j+l] = c[i][j+l] + a[i][k+0] * b[k+0][j+l] 
c[i][j+l] = c[i][j+l] + a[i][k+l] * b[k+l] [j+1] 
c[i][j+l] = c[i][j+l] + a[i][k+2] * b[k+2][j+l] 
c[i][j+l] = c[i][j+l] + a[i][k+3] * b[k+3][j+l] 

c[i][j+3] = c[i][j+3] + a[i][k+0] * b[k+0] [j+3] 
c[i][j+3] = c[i][j+3] + a[i][k+l] * b[k+l] [j+3] 
c[i][j+3] = c[i][j+3] + a[i][k+2] * b[k+2] [j+3] 
c[i][j+3] = c[i][j+3] + a[i][k+3] * b[k+3][j+3] 

StopTimerO; 
printf('7.f\n",   c[l][l]); 

void MM_unroll_3()  { 
int i,  j,  k; 

StartTimerO; 

for  (j=0;  j<N;  j+=10) 
for  (k=0;  k<L; k+=4) 

for  (i=0;  i<M;  i++)  { 
c[i][j+0]  = c[i][j+0]  + a[i][k+0] * b[k+0][j+0]; 
c[i][j+0]  = c[i][j+0]  + a[i][k+l] * b[k+l][j+0]; 
c[i][j+0]  = c[i][j+0]  + a[i][k+2] * b[k+2][j+0]; 
c[i][j+0]  = c[i][j+0]  + a[i][k+3] * b[k+3][j+0]; 

c[i][j+l]  = c[i][j+l]  + a[i][k+0]  * b[k+0][j+l]; 

10 



c[i][j+l] 
c[i][j+l] 
c[i][j+l] 

c[i][j+2] 
c[i][j+2] 
c[i][j+2] 
c[i][j+2] 

e[i][j+3] 
c[i][j+3] 
c[i][j+3] 
c[i][j+3] 

c[i][j+4] 
c[i][j+4] 
c[i][j+4] 
c[i][j+4] 

c[i][j+5] 
c[i][j+5] 
c[i][j+5] 
c[i][j+5] 

c[i][j+6] 
c[i][j+6] 
c[i][j+6] 
c[i][j+6] 

c[i][j+7] 
c[i][j+7] 
c[i][j+7] 
c[i][j+7] 

c[i][j+8] 
c[i][j+8] 
c[i][j+8] 
c[i][j+8] 

c[i][j+9] 
c[i][j+9] 
c[i][j+9] 
c[i][j+9] 

c[i ] [j+i] 
c[i ] O+i] 
c[i 1 O+i] 

c[i 0+2] 
cCi 0+2] 
c[i 0+2] 
c[i 0+2] 

c[i 0+3] 
c[i [j+3] 
c[i" 0+3] 
c[i 0+3] 

c[i: 0+4] 
c[i: 0+4] 
c[i: [j+4] 
c[i: 0+4] 

c[i: 0+5] 
c[i: 0+5] 
cu: 0+5] 
cu: 0+5] 

cci: 0+6] 
cci: 0+6] 
cu: 0+6] 
c[i: 0+6] 

cu: 0+7] 
cu: 0+7] 
c[i: 0+7] 
c[i: 0+7] 

c[i: 0+8] 
c[i: 0+8] 
cu: 0+8] 
c[i: 0+8] 

c[i: 0+9] 
c[i: 0+9] 
cti: 0+9] 
c[il 0+9] 

+ a[i][k+l 
+ a[i][k+2 
+ a[i] [k+3! 

+ a[i] [k+o: 
+ a[i] [k+1 
+ a[i][k+2 
+ a[i] [k+3: 

+ a[i] [k+o! 
+ a[i][k+l! 
+ a[i][k+2 
+ a[i] [k+3; 

+ a[i][k+o: 
+ a[i][k+l 
+ a[i] [k+2: 
+ a[i][k+3: 

+ a[i] [k+o: 
+ a[i][k+l 
+ a[i][k+2: 
+ a[i][k+3: 

+ a[i] [k+o: 
+ a[i] [k+1 
+ a[i][k+2: 
+ a[i][k+3: 

+ a[i] [k+o: 
+ a[i] [k+i: 
+ a[i] [k+2: 
+ a[i] [k+3: 

+ a[i] [k+o: 
+ a[i][k+i: 
+ a[i][k+2: 
+ a[i][k+3: 

+ a[i] [k+o: 
+ a[i] [k+i: 
+ a[i] [k+2: 
+ a[i] [k+3: 

* b [k+1] [j+i] 
* b[k+2] [j+i] 
* b [k+3] [j+i] 

* b [k+0] 0+2] 
* b [k+1] [j+2] 
* b[k+2] [j+2] 
* b[k+3] [j+2] 

* b[k+0] [j+3] 
* b[k+l] [j+3] 
* b[k+2] [j+3] 
* b[k+3][j+3] 

* b[k+0][j+4]; 
* b[k+l][j+4]; 
* b[k+2] [j+4]; 
* b [k+3] [j+4]; 

* b [k+0] 0+5] 
* b [k+1] [j+5] 
* b[k+2] [j+5] 
* b[k+3] [j+5] 

* b [k+0] [j+6] 
* b[k+1] [j+6] 
* b[k+2] [j+6] 
* b[k+3] [j+6] 

* b [k+0] [j+7] 
* b[k+1] [j+7] 
* b[k+2] [j+7] 
* b[k+3] [j+7] 

* b [k+0] [j+8] 
* b[k+l] [j+8] 
* b[k+2][j+8] 
* b[k+3] [j+8] 

* b[k+0][j+9]; 
* b [k+1] [j+9]; 
* b[k+2] [j+9]; 
* b[k+3][j+9]; 

StopTimerO; 

printf('7.f\n",   c[l][l]); 

} 

mainO  ■[ 
initO; 
MM_basic(); 
MM_unroll_l(); 
MM_unroll_2(); 
MM_unroll_30; 
} 
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B    Loop Fusion Examples 

»include <stdio.h> 

«define N 1000 

»define M 1000 

double 

double 

double 

double 

double 

double 

double 

double 

double 

double 

double 

double 

xl[N] 
x2[N] 
x3[N] 
x4[N] 
x5[N] 
x6[N] 
x7[N] 
x8[N] 
x9[N] 
xl0[N] 
xll [N] 
xl2[N] 

double 

double 

double 

double 

double 

double 

double 

double 

double 

double 

double 

double 

yl[N] 
y2[N] 
y3DG 
y4[N] 
y5[N] 
y6[N] 
y7[N] 
y8[N] 
y9[N] 
yl0[K] 
yll[N] 
yl2[N] 

double 
double 

double 
double 

double 

double 

double 

double 

double 

double 

double 

double 

zlCH] 
z2D0 
z3[H] 
z4[N] 
z5[N] 
z6[N] 
z7[N] 
z8[N] 
z9[N] 
Z10[N] 
zll[N] 
zl2[N] 

double 

double 

double 

double 

double 

double 

double 

double 

double 

al[N]; 
a2[N]; 
a3[N]; 
a4[N] ; 
a5[N]; 
a6[N]; 
a7[t0; 
a8[N]; 
a9[N]; 

double 

double 

double 

double 

double 

double 

blDOi 
b2[N] ; 
b3[N] ; 
b4[N] ; 
b5[N] ; 
b6[N] ; 
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double cl [N]; 
double c2[N]; 
double  c3[N]; 

void NotFusedO   { 
int i,  j; 

StartTimerO; 

for  (j=0;   j<M;  j++)  { 

/* loopl */ 
for  (i=0;   i<N;  i++)  { 

x9[i]  = x8[i]   - xl[i]; 
xlO[i]  = x7[i]  - x2[i]; 
xll[i]  = x6[i]  - x3[i]; 
xl2[i]  = x5[i]  - x4[i]; 
y9[i]  = y8[i]  - yl[i]; 
ylO[i]  = y7[i]  - y2[i]j 
yll[i]  = y6[i]  - y3[i]; 
yl2[i]  = y5[i]  - y4[i]; 
z9[i]  = z8[i]  - zl[i]; 
zlO[i]  = z7[i]  - z2[i]; 
zll[i]   = z6[i]  - z3[i]; 
zl2[i]   = z5[i]  - z4[i]; 
} 

/* loop2 */ 
for (i=0;   i<N;  i++)  { 

al[i]  = x9[i]  + xlO[i]  + xll[i]  + xl2[i]; 
a2[i]  = y9[i]  + ylO[i]  + yll[i]  + yl2[i]; 
a3[i]  = z9[i]  + zlO[i]  + zll[i]  + zl2[i]j 
a4[i]  = x9[i]  + xl2[i]; 
a5[i]  = xlO[i]  + xll[i]; 
a6[i]  = y9[i]  + yl2[i]; 
a7[i]  = ylO[i]  + yll[i]; 
a8[i]  = z9[i]  + zl2[i] ; 
a9[i]  = zlO[i]  + zll[i]; 
> 

/* loop3 */ 
for (i=0;   i<N;   i++)  { 

bl[i]  = al[i]  + a2[i]  + xl[i]  + x2[i]  + x7[i]; 
b2[i]  = a2[i]  + a3[i]  + x3[i]  + x4[i]  + y7[i]; 
b3[i]  = a3[i]  + al[i]  + x5[i]  + x6[i]  + z7[i]; 
cl[i]  = yl[i]  + al[i]; 
c2[i]  = y2[i]  + a2[i]; 
c3[i]  = y3[i]  + a3[i]; 
} 

} 

StopTimerO; 

printf('7.f\n", c3[l]); 

} /* end NotFused */ 

void Fused() { 
int i, j; 

StartTimerO; 

for (j=0; j<M; j++) 
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for (i=0;  i<N;   i++)  { 
x9[i]  = x8[i]  - xl[i]; 
xlO[i]  = x7[i]  - x2[i]; 
xll[i]  = x6[i]   - x3[i]; 
xl2[i]  = x5[i]   - x4[i]; 
y9[i]  = y8[i]  - yl[i]; 
ylO[i]  = y7[i]  - y2[i]; 
yll[i]  = y6[i]  - y3[i]; 
yl2[i]  = y5[i]  - y4[i]; 
z9[i]  = z8[i]  - zl[i]; 
zlO[i]  = z7[i]   - z2[i]; 
zll[i]  = z6[i]  - z3[i]; 
zl2[i]   = z5[i]   - z4[i]; 
al[i]  = x9[i]  + xiO[i]  + xll[i]  + xl2[i]; 
a2[i]  = y9[i]  + ylO[i]  + yll[i]  + yl2[i]; 
a3[i]  = z9[i]  + zlO[i]  + zll[i]  + zl2[i]; 
a4[i]  = x9[i]  + xl2[i]; 
a5[i]  = xlO[i]  + xll[i]; 
a6[i]  = y9[i]  + yl2[i]; 
a7[i]  = ylO[i]  + yll[i]; 
a8[i]  = z9[i]  + zl2[i]; 
a9[i]  = zlO[i]  + zll[i]; 
bl[i] = al[i] + a2[i] + xl[i] + x2[i] + x7[i]; 
b2[i] = a2[i] + a3[i] + x3[i] + x4[i] + y7[i]; 
b3[i] = a3[i] + al[i] + x5[i] + x6[i] + z7[i]; 
cl[i] = yl[i] + al[i]; 
c2[i] = y2[i] + a2[i] 
c3[i] = y3[i] + a3[i] 
} 

StopTimerO; 

printf('7.f\n",   c3[l]); 

} /* end Fused */ 

mainO  { 

NotFusedO; 
FusedO; 

> /* end main */ 
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C    Loop Unrolling Pipeline Success Messages 

#<svps> 

#<svps> Pipelined loop line 23 steady state 

#<swps> 

#<swps> 4 unrollings before pipelining 

#<svps> 2 cycles per 4 iterations 

#<swps> 0 flops       ( 07. of peak) (madds count as 2) 

#<svps> 0 flops       ( 0'/. of peak) (madds count as 1) 

#<swps> 0 madds       ( 0% of peak) 

#<swps> 4 mem refs    (100'/. of peak) 

#<swps> 2 integer ops  ( SO'/, of peak) 

#<svps> 6 instructions ( 75'/. of peak) 

#<svps> 0 short trip threshold 

#<swps> 3 ireg registers used. 

#<swps> 1 fgr register used. 

#<swps> 

#<swps> 

#<s«ps> Pipelined loop line 36 steady state 
#<swps> 

#<swps> 4 unrollings before pipelining 

#<swps> 6 cycles per 4 iterations 

#<swps> 8 flops       ( 337. of peak) (madds count as 2) 

#<swps> 4 flops       ( 337. of peak) (madds count as 1) 

#<swps> 4 madds       ( 337. of peak) 

#<swps> 12 mem refs    (1007. of peak) 

#<ssps> 3 integer ops  ( 257. of peak) 

#<swps> 19 instructions ( 797. of peak) 

#<swps> 2 short trip threshold 

#<s«ps> 7 ireg registers used. 

#<swps> 14 fgr registers used. 
#<sups> 

#<svps> 6 possible stall cycles 

#<swps> 6 min possible stall cycles 
#<ssps> 

#<svps> 

#<swps> Pipelined loop line 53 steady state 
#<swps> 

#<s«ps> Hot unrolled before pipelining 

#<svps> 7 cycles per iteration 

#<swps> 24 flops       ( 857. of peak) (madds count as 2) 

#<swps> 12 flops       ( 857. of peak) (madds count as 1) 

#<s«ps> 12 madds       ( 857. of peak) 

#<swps> 10 mem refs    ( 717. of peak) 

#<svps> 3 integer ops ( 217. of peak) 

#<svps> 25 instructions ( 897. of peak) 

#<svps> 4 short trip threshold 

#<swps> 11 ireg registers used. 

#<swps> 27 fgr registers used. 

#<svps> 

#<swps> 

#<snps> Pipelined loop line 84 steady state 
#<svps> 

#<swps> Not unrolled before pipelining 

#<swps> 9 cycles per iteration 

#<s«ps> 32 flops      ( 887. of peak) (madds count as 2) 

#<svps> 16 flops       ( 887. of peak) (madds count as 1) 

#<svps> 16 madds       ( 887. of peak) 

#<swps> 12 mem refs    ( 667. of peak) 
#<svps> 3 integer ops ( 167. of peak) 

•<svps> 31 instructions ( 86% of peak) 

#<sups> 2 short trip threshold 

#<swps> 7 ireg registers used. 
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#<swps> 32 fgr registers used. 

#<swps> 

#<swps>    8 min cycles required for resources 

#<swps>    9 cycle schedule register allocated. 

#<swps> 

#<swps> 

#<swps> Pipelined loop line 120 steady state 

#<swps> 

#<swps>     Not unrolled before pipelining 

#<swps> 27 cycles per iteration 

#<swps> 80 flops      ( 74'/. of peak) (madds count as 2) 

#<svps> 40 flops      ( 74'/. of peak) (madds count as 1) 

#<sops> 40 madds      ( 74'/. of peak) 

#<sops> 24 mem refs    ( 447, of peak) 

#<svps>    3 integer ops ( 5'/. of peak) 

#<swps> 67 instructions ( 62'/. of peak) 

#<swps>    2 short trip threshold 

#<swps> 7 ireg registers used. 

#<svps> 32 fgr registers used. 

#<s»ps> 

#<svps> 29 restores introduced. 

#<swps> 14 possible stall cycles 

#<svps> 14 min possible stall cycles 

#<swps> 
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D    Loop Fusion Pipeline Success Messages 

#<sups> 

#<sups> 

#<svps> 

#<svps> 

#<swps> 

#<swps> 

#<s«ps> 

#<swps> 

#<SWpS> 

#<swps> 

#<SHpS> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<SWpS> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<svps> 

#<swps> 

#<svps> 

#<svps> 

#<svps> 

#<svps> 

#<sups> 

#<swps> 

#<svps> 

#<swps> 

#<svps> 

#<swps> 

#<sops> 

#<swps> 

#<svps> 

#<svps> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<swps> 

#<svps> 

#<svps> 

#<swps> 

#<svps> 

#<swps> 

t<svps> 

#<svps> 

S<snps> 

#<swps> 

t<svps> 

#<swps> 

#<snps> 

#<swps> 

#<svps> 

#<swps> 

t<svps> 

t<svps> 

Pipelined loop line 75 steady state 

Not unrolled before pipelining 

18 cycles per iteration 

( 16'/. of peak) 
( 33*/. of peak) 
( 0'/. of peak) 
(100X of peak) 
( 13'/. of peak) 
( 737. of peak) 

12 flops       ( 16'/. of peak) (madds 

12 flops       ( 33'/. of peak) (madds 
0 madds 

36 mem refs 

5 integer ops 

53 instructions 

1 short trip threshold 

9 ireg registers used. 

21 fgr registers used. 

18 possible stall cycles 

18 min possible stall cycles 

Pipelined loop line 90 steady state 

Not unrolled before pipelining 

11 cycles per iteration 

count as 2) 

count as 1) 

( 347. of peak) 

( 687. of peak) 

( 07. of peak) 

( 957. of peak) 

( 97. of peak) 

( 867. of peak) 

15 flops       ( 347. of peak) (madds 

15 flops       ( 687. of peak) (madds 

0 madds 

21 mem refs 

2 integer ops 

38 instructions 

3 short trip threshold 

17 ireg registers used. 

29 fgr registers used. 

10 possible stall cycles 

10 min possible stall cycles 

Pipelined loop line 102 steady state 

Not unrolled before pipelining 

11 cycles per iteration 

count as 2) 

count as 1) 

15 flops 

15 flops 

0 madds 

21 mem refs 

2 integer ops 

( 347. of peak) 
( 687. of peak) 
( 07. of peak) 

( 957. of peak) 
( 97. of peak) 

(madds 

(madds 

count as 2) 

count as 1) 

38 instructions ( 86% of peak) 

3 short trip threshold 

19 ireg registers used. 

21 fgr registers used. 

10 possible stall cycles 

10 min possible stall cycles 

Pipelined loop line 126 steady state 

Not unrolled before pipelining 

48 cycles per iteration 

42 flops      ( 21'/. of peak) (madds 

42 flops      ( 43'/. of peak) (madds 

count as 2) 

count as 1) 
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#<svps> 0 madds      ( 0% of peak) 

#<swps> 51 mem refs    ( 537. of peak) 

#<swps> 6 integer ops ( 67, of peak) 

#<swps> 99 instructions ( 517, of peak) 

#<swps>    1 short trip threshold 

#<s»ps> 16 ireg registers used. 

#<swps> 32 fgr registers used. 
#<swps> 

#<swps> 3 spills 5 restores introduced. 
#<sups> 25 possible stall cycles 

#<swps> 11 min possible stall cycles 

#<swps> 

#<s«ps> 26 min cycles required for resources 

#<swps> 48 cycle schedule register allocated. 

#<swps> 30 min cycles required for resources with additional memory refs. 

#<swps> 30 min cycles required for recurrences with additional memory refs. 

#<swps> 
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